Login / Signup

Spectroelectrochemistry of CdSe/Cd x Zn 1- x S Nanoplatelets.

Arun AshokanJiho HanJames Andell HutchisonPaul A Mulvaney
Published in: ACS nano (2023)
We report an unexpected enhancement of photoluminescence (PL) in CdSe-based core/shell nanoplatelets (NPLs) upon electrochemical hole injection. Moderate hole doping densities induce an enhancement of more than 50% in PL intensity. This is accompanied by a narrowing and blue-shift of the PL spectrum. Simultaneous, time-resolved PL experiments reveal a slower luminescence decay. Such hole-induced PL brightening in NPLs is in stark contrast to the usual observation of PL quenching of CdSe-based quantum dots following hole injection. We propose that hole injection removes surface traps responsible for the formation of negative trions, thereby blocking nonradiative Auger processes. Continuous photoexcitation causes the enhanced PL intensity to decrease back to its initial level, indicating that photocharging is a key step leading to loss of PL luminescence during normal aging. Modulating the potential can be used to reversibly enhance or quench the PL, which enables electro-optical switching.
Keyphrases