Login / Signup

Pharmacokinetics of ginsenosides following repeated oral administration of red ginseng extract significantly differ between species of experimental animals.

Ji-Hyeon JeonJaehyeok LeeMin-Koo ChoiIm Sook Song
Published in: Archives of pharmacal research (2020)
We aimed to investigate ginsenoside pharmacokinetics in mice and rats following the repeated oral administration of red ginseng extract (RGE) (2 g/kg/day for 7 days). In mouse plasma, seven protopanaxadiol (PPD)-type ginsenosides (20(S)-ginsenoside Rb1, Rb2, Rc, Rd, Rg3, 20(S)-compound K, and 20(S)-PPD) and one protopanaxatriol (PPT)-type 20(S)-ginsenoside Re were detected, whereas 20(S)-ginsenoside Rb1, Rb2, Rc, Rd, 20(S)-PPD, and 20(S)-PPT were detected in rat plasma. The tetra- or tri-glycosylated PPD-type ginsenosides Rb1, Rb2, Rc, and Rd, high content ginsenosides in RGE, showed high plasma exposure, a short absorption time (Tmax), and a long elimination time (T1/2) among the ginsenosides detected in both species. Among the deglycosylated metabolites existing in the feces, 20(S)-compound K and 20(S)-PPD in mice and 20(S)-PPD and 20(S)-PPT in rats were found in the plasma samples. In addition to the differences in the ginsenosides detected in mice and rats, the Tmax and T1/2 of 20(S)-PPD and 20(S)-PPT in rats were greater than those in mice, suggesting the species-dependent difference in the gut metabolism and absorption of ginsenosides in the pathway from 20(S)-ginsenoside Rd to 20(S)-PPD and from 20(S)-ginsenoside Re to 20(S)-PPT. In conclusion, the choice of animal model should be the subject of careful consideration when exploring the pharmacology of RGE with specific focus on the plasma profile of an individual ginsenoside.
Keyphrases
  • high fat diet induced
  • oxidative stress
  • insulin resistance
  • ms ms
  • adipose tissue
  • skeletal muscle