Login / Signup

TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest.

Russell B DoughtyPhilipp KöhlerChristian FrankenbergTroy S MagneyXiangming XiaoYuanwei QinXiaocui WuBerrien Moore
Published in: Proceedings of the National Academy of Sciences of the United States of America (2019)
Photosynthesis of the Amazon rainforest plays an important role in the regional and global carbon cycles, but, despite considerable in situ and space-based observations, it has been intensely debated whether there is a dry-season increase in greenness and photosynthesis of the moist tropical Amazonian forests. Solar-induced chlorophyll fluorescence (SIF), which is emitted by chlorophyll, has a strong positive linear relationship with photosynthesis at the canopy scale. Recent advancements have allowed us to observe SIF globally with Earth observation satellites. Here we show that forest SIF did not decrease in the early dry season and increased substantially in the late dry season and early part of wet season, using SIF data from the Tropospheric Monitoring Instrument (TROPOMI), which has unprecedented spatial resolution and near-daily global coverage. Using in situ CO2 eddy flux data, we also show that cloud cover rarely affects photosynthesis at TROPOMI's midday overpass, a time when the forest canopy is most often light-saturated. The observed dry-season increases of forest SIF are not strongly affected by sun-sensor geometry, which was attributed as creating a pseudo dry-season green-up in the surface reflectance data. Our results provide strong evidence that greenness, SIF, and photosynthesis of the tropical Amazonian forest increase during the dry season.
Keyphrases
  • climate change
  • energy transfer
  • single molecule
  • healthcare
  • machine learning
  • quantum dots
  • data analysis
  • artificial intelligence
  • water soluble