Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity.
Yayun HongHongli ZhaoChenlu PuQiliang ZhanQianying ShengMinbo LanPublished in: Analytical chemistry (2018)
In this work, multifunctional Ti4+-immobilized phytic acid-modified magnetic graphene (denoted as MagG@PEI@PA-Ti4+) nanocomposites were fabricated through a facile route for simultaneous/respective enrichment of N-glyco- and phosphopeptides. Phytic acid (PA), with six phosphate groups, possesses excellent hydrophilicity and metal ion coordination ability, which endowed the MagG@PEI@PA-Ti4+ with combined properties of immobilized metal ion affinity chromatography (IMAC)- and hydrophilic interaction liquid chromatography (HILIC)-based materials. On the basis of the different binding ability of N-glyco- and phosphopeptides on MagG@PEI@PA-Ti4+, the MagG@PEI@PA-Ti4+ nanocomposites could enrich N-glyco- and phosphopeptides simultaneously or respectively by using different enrichment conditions, achieving controllable selective enrichment of N-glyco- and phosphopeptides. The proposed nanocomposites demonstrated an outstanding performance for selective enrichment of N-glycopeptides (selectivity, 1:1000 molar ratios of IgG/BSA; sensitivity, 0.5 fmol/μL IgG; loading capacity, 300 mg g-1; recovery, >90%) and phosphopeptides (selectivity, 1:5000 molar ratios of α-casein/BSA; sensitivity, 0.1 fmol/μL α-casein; loading capacity, 100 mg g-1; recovery, >90%). Taking advantage of these merits, a total of 393 N-glycopeptides derived from 259 glycoproteins and 574 phosphopeptides derived from 341 phosphoproteins were identified from 200 μg of HeLa cell extracts through a single-step enrichment using MagG@PEI@PA-Ti4+.
Keyphrases
- liquid chromatography
- mass spectrometry
- tandem mass spectrometry
- high resolution mass spectrometry
- capillary electrophoresis
- solid phase extraction
- simultaneous determination
- carbon nanotubes
- reduced graphene oxide
- high performance liquid chromatography
- molecularly imprinted
- gas chromatography
- ionic liquid
- stem cells
- drug delivery
- quantum dots
- magnetic nanoparticles
- cell death
- cell therapy
- visible light
- room temperature
- metal organic framework