Login / Signup

V═O Functionalized {Tm2}-Organic Framework Designed by Postsynthesis Modification for Catalytic Chemical Fixation of CO2 and Oxidation of Mustard Gas.

Hongtai ChenLiming FanTuo-Ping HuXiutang Zhang
Published in: Inorganic chemistry (2021)
In terms of recently documented references, the introduction of V═O units into porous MOF/COF frameworks can greatly improve their original performance and expand their application prospects due to a change in their electronegativity. In this work, by a cation-exchange strategy, a consummate combination of separate 4f [Tm2(CO2)8] SBUs and 3d [VIVO(H2O)2] units generated the functionalized porous metal-organic framework {(Me2NH2)2[VO(H2O)][Tm2(BDCP)2]·3DMF·3H2O}n (NUC-11), in which [Tm2(CO2)8] SBUs constitute the fundamental 3D host framework of {[Tm2](BDCP)2}n along with [VIVO(H2O)2] units being further docked on the inner wall of channels by covalent bonds. Significantly, NUC-11 represents the first example of V═O modified porous MOFs, in which uncoordinated carboxylic groups (-CO2H) further grasp the functional [VIVO(H2O)2] units on the initial basic skeleton along with the formation of covalent bonds as fixed ropes. Furthermore, activated samples of NUC-11 displayed a good catalytic performance for the chemical synthesis of carbonates from related epoxides and CO2 with high conversion rate. Moreover, by employing NUC-11 as a catalyst, a simulator of mustard gas, 2-chloroethyl ethyl sulfide, could be quickly and efficiently oxidized into low-toxicity products of oxidized sulfoxide (CEESO). Thus, this study offers a brand new view for the design and synthesis of functional-units-modified porous MOFs, which could be potentially applied as an excellent candidate in the growing field of efficient catalysis.
Keyphrases
  • metal organic framework
  • room temperature
  • quantum dots
  • ionic liquid
  • oxidative stress
  • highly efficient
  • crystal structure
  • carbon dioxide
  • drug induced