Login / Signup

Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications.

Shujat AliArumugam Selva SharmaWaqas AhmadQuansheng ChenMd Mehdi HassanAnnavaram ViswadevarayaluTianhui JiaoHuanhuan LiQuansheng Chen
Published in: Critical reviews in analytical chemistry (2020)
Noble bimetallic and trimetallic nanoparticles (NBT-NPs) have superior biomedical applications as compared to their monometallic counterparts. The performance of these nanomaterials depends on their composition, shape and size. Hence, the controlled-synthesis of these nanomaterials is a hot area of research. Till date, no review article in the literature accounts regarding the controlled-synthesis and biomedical applications related to morphology, optimum composition, biocompatibility and versatile chemistry of NBT-NPs. Taking this into contemplation, an effort was made to provide a clear insight into the morphology-controlled synthesis and size/shape-dependent anticancer and bactericidal applications of NBT-NPs. Chemical reduction method for the controlled-synthesis of NBT-NPs is reviewed critically. Furthermore, the potential role of various reaction parameters such as time, reducing agents, stabilizing/capping agents, nature/concentration of precursors, temperature and pH in the shape/size-controlled synthesis of these nanomaterials are discussed. In the second part of this article, anticancer and bactericidal applications of the NBT-NPs are reviewed and the influences of optimum composition, size, surface structure, versatile chemistry and synergism are studied. Finally, the current challenges in the controlled-synthesis and biomedical applications of these nanomaterials, and prospects to resolve related issues are discussed. HighlightsChemical reduction method for the synthesis of NBT-NPs is reviewed.The influences of parameters on the control synthesis of NBT-NPs are discussed.Antibacterial and anticancer applications and cytotoxicity of NBT-NPs are reviewed.Possible solutions for the key challenges are discussed.Outlooks about the synthesis and biomedical applications of NBT-NPs are discussed.
Keyphrases
  • oxide nanoparticles
  • risk assessment
  • staphylococcus aureus
  • heavy metals
  • drug discovery
  • walled carbon nanotubes