Login / Signup

Metagenome-Assembled Genomes Reveal Mechanisms of Carbohydrate and Nitrogen Metabolism of Schistosomiasis-Transmitting Vector Biomphalaria Glabrata .

Shuling DuXi SunJingxiang ZhangDatao LinRunzhi ChenYing CuiSuoyu XiangZhongdao WuTao Ding
Published in: Microbiology spectrum (2022)
Biomphalaria glabrata transmits schistosomiasis mansoni which poses considerable risks to hundreds of thousands of people worldwide, and is widely used as a model organism for studies on the snail-schistosome relationship. Gut microbiota plays important roles in multiple aspects of host including development, metabolism, immunity, and even behavior; however, detailed information on the complete diversity and functional profiles of B. glabrata gut microbiota is still limited. This study is the first to reveal the gut microbiome of B. glabrata based on metagenome-assembled genome (MAG). A total of 28 gut samples spanning diet and age were sequenced and 84 individual microbial genomes with ≥ 70% completeness and ≤ 5% contamination were constructed. Bacteroidota and Proteobacteria were the dominant bacteria in the freshwater snail, unlike terrestrial organisms harboring many species of Firmicutes and Bacteroidota . The microbial consortia in B. glabrata helped in the digestion of complex polysaccharide such as starch, hemicellulose, and chitin for energy supply, and protected the snail from food poisoning and nitrate toxicity. Both microbial community and metabolism of B. glabrata were significantly altered by diet. The polysaccharide-degrading bacterium Chryseobacterium was enriched in the gut of snails fed with high-digestibility protein and high polysaccharide diet (HPHP). Notably, B. glabrata as a mobile repository can escalate biosafety issues regarding transmission of various pathogens such as Acinetobacter nosocomialis and Vibrio parahaemolyticus as well as multiple antibiotic resistance genes in the environment and to other organisms. IMPORTANCE The spread of aquatic gastropod Biomphalaria glabrata , an intermediate host of Schistosoma mansoni, exacerbates the burden of schistosomiasis disease worldwide. This study provides insights into the importance of microbiome for basic biological activities of freshwater snails, and offers a valuable microbial genome resource to fill the gap in the analysis of the snail-microbiota-parasite relationship. The results of this study clarified the reasons for the high adaptability of B. glabrata to diverse environments, and further illustrated the role of B. glabrat a in accumulation of antibiotic resistance in the environment and spread of various pathogens. These findings have important implications for further exploration of the control of snail dissemination and schistosomiasis from a microbial perspective.
Keyphrases