Anticancer Activities of Cu(II) Complex-Schiff Base and Low-Frequency Electromagnetic Fields and the Interaction Between Cu(II) Complex-Schiff Base with Bovine Serum Albumin by Spectroscopy.
Soheyla YadamaniAli NeamatiMasoud Homayouni-TabriziSamira YadamaniAfsaneh Javdani-MallakS Ali BeyramabadiPublished in: Applied biochemistry and biotechnology (2019)
Cancer is the consequence of abnormal cell proliferation, which leads to the formation of abnormal mass. In this study, we aimed to determine the anticancer properties of Cu(II)-Schiff base complex and low-frequency electromagnetic field, and the interaction between BSA and Cu(II) complex. Firstly, Schiff base of the Cu(II) complex in the N,N'-dipyridoxyl(1,2 diaminobenzene) was originally synthesized. Following, the breast cancer was transplanted with the TUBO cells in vivo. Then, treatment of the cancerous mice was done by low-frequency electromagnetic field and the Cu(II)-Schiff base complex. In this project, antiproliferative activity on breast cancer cells was tested by TUBO cells using MTT assay and apoptosis properties were studied by flow cytometry. The interaction between the Cu(II)-Schiff base complex and bovine serum albumin (BSA) was checked by fluorescence and UV-vis absorbance spectroscopy. Tumor tissue investigation demonstrated that the low-frequency electromagnetic field and Cu(II)-Schiff base complex induce apoptosis and inhibit tumor growth. MTT results unveiled a cytotoxic impact on breast cancer cells. Flow cytometry analysis demonstrates that the anticancer effect of Cu(II)-Schiff base complex on breast cancer cells (MCF7) was associated with the cell cycle arrest. The results of fluorescence spectra and UV-vis absorption spectra showed that the conformation of bovine serum albumin has been changed in the presence of Cu(II)-Schiff base complex. Cu(II)-Schiff base complex and low-frequency electromagnetic field have anticancer properties. The spectroscopy method indicates the binding between Cu(II)-Schiff base complex and BSA.
Keyphrases
- cell cycle arrest
- breast cancer cells
- aqueous solution
- flow cytometry
- cell death
- cell proliferation
- induced apoptosis
- single molecule
- metal organic framework
- type diabetes
- high resolution
- endoplasmic reticulum stress
- oxidative stress
- high frequency
- metabolic syndrome
- pi k akt
- skeletal muscle
- single cell
- smoking cessation
- quantum dots
- dna binding
- combination therapy
- data analysis
- crystal structure