A novel nano delivery system targeting different stages of osteoclasts.
Bongsong ZhangJuzhi ZhaoHongji YanYufang ZhaoHui TianCao WangRuiqi WangJiaming JinYue ChenChaofan YangChunfeng LiYanwen JiaoKaipeng ZhengFuxing ZhuWeiming TianPublished in: Biomaterials science (2022)
Osteoclast (OC) abnormalities represent osteoporosis's critical mechanism (OP). OCs undergo multiple processes that range from monocytic to functional. Different drugs target OCs at different developmental stages; however, almost no Suitable drug-targeted delivery systems exist. Therefore, we designed two dual-targeting nanoparticles to target OCs at different functional stages. Using the calcitonin gene-related peptide receptor (CGRPR), which OC precursors highly express, and specific TRAPpeptides screened in the bone resorption lacuna, where mature OCs function, respectively, two types of dual-targeted nanoparticles were constructed. Afterwards, nanoparticles were grafted with hyaluronic acid (HA), which specifically binds to CD44 on the surface of the OCs. In vivo and in vitro experiments show that both nanoparticles have noticeable targeting effects on OCs. This suggests that dual-targeting nanoparticles designed for different functional periods of OC can be well targeted to the corresponding OC, and further promote the more precise delivery of drugs used to treat OP.