Login / Signup

A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

Ming LiuYuxun RenDong ZhouHaoran JiangFeiyu KangTian-Shou Zhao
Published in: ACS applied materials & interfaces (2017)
The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm-2) present superior cycling stability (727.4 mAh g-1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g-1 at 2 C) and power density (∼10 mW cm-2), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm-2) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.
Keyphrases
  • solid state
  • ion batteries
  • reduced graphene oxide
  • solar cells
  • clinical trial
  • ionic liquid
  • open label
  • gold nanoparticles
  • drinking water
  • study protocol