Recognizing normal reproductive biology: A comparative analysis of variability in menstrual cycle biomarkers in German and Bolivian women.
Virginia J VitzthumJonathan ThornburgHilde SpielvogelTobias DeschnerPublished in: American journal of human biology : the official journal of the Human Biology Council (2021)
The idealized "normal" menstrual cycle typically comprises a coordinated ebb and flow of hormones over a 28-day span with ovulation invariably shown at the midpoint. It's a pretty picture-but rare. Systematic studies have debunked the myth that cycles occur regularly about every 28 days. However, assumptions persist regarding the extent and normalcy of variation in other cycle biomarkers. The processes of judging which phenotypic variants are "normal" is context dependent. In everyday life, normal is that which is most commonly seen. In biomedicine normal is often defined as an arbitrarily bounded portion of the phenotype's distribution about its statistical mean. Standards thus defined in one population are problematic when applied to other populations; population specific standards may also be suspect. Rather, recognizing normal female reproductive biology in diverse human populations requires specific knowledge of proximate mechanisms and functional context. Such efforts should be grounded in an empirical assessment of phenotypic variability. We tested hypotheses regarding cycle biomarker variability in women from a wealthy industrialized population (Germany) and a resource-limited rural agropastoral population (Bolivia). Ovulatory cycles in both samples displayed marked but nonetheless comparable variability in all cycle biomarkers and similar means/medians for cycle and phase lengths. Notably, cycle and phase lengths are poor predictors of mid-luteal progesterone concentrations. These patterns suggest that global and local statistical criteria for "normal" cycles would be difficult to define. A more productive approach involves elucidating the causes of natural variation in ovarian cycling and its consequences for reproductive success and women's health.