Nanoscale Profiling of 2D Surface Hydrophobicity Recognition of Environmental Media via AFM Measurements In Situ.
Yuyao ZhangXiaoying ZhuBaoliang ChenPublished in: Environmental science & technology (2020)
The surface hydrophobicity and its heterogeneity are essential physicochemical properties of functional materials and environmental media, which directly influence many critical processes, such as the adsorption capacity of absorbents, water/fertilizer retention of soil and oil-water separation performances of membranes. The conventional method to characterize the surface hydrophobicity is based on the water/air/oil contact angle, which could only analyze the macroscale local hydrophobicity of the surfaces. Until now, it is impossible to profile two-dimensional surface hydrophobicity recognition in the nanoscale. Here we utilized an atomic force microscopy (AFM)-based chemical force spectroscopy to measure the topography and the local adhesion forces in the nanoscale. A novel approach is established to exploit adhesion forces to extract the hydrophobic attractions, enabling mapping of the surface hydrophobicity of environmental media in the nanoscale, which was validated by studying synthetic self-assembled monolayers of known composition. The new method was then applied to directly measure the hydrophobicity of porous biochar particles, to profile two-dimensional nanoscale hydrophobicity images of graphene oxide, and to observe the in situ variations of the graphite surface hydrophobicity in the adsorption process of benzylamine, which cannot be monitored by the conventional methods. The advantages of direct observations of the surface hydrophobicity recognition from a single AFM image dynamically and quantitatively may provide an in-depth insight into the surface hydrophobicity in the nanoscale.