Login / Signup

Tomographic Imaging and Correlation to Quantify Vascular and Inflammatory Changes in an Experimental Spinal Cord Injury.

Kirti AdhikariSonam DolmaTeena MamidiAbhishek RoyZarna PathakHemant Kumar
Published in: ACS chemical neuroscience (2021)
Spinal cord injury (SCI) is a devastating condition causing the loss of sensory and motor functions. SCI pathology is multifaceted, encompassing inflammation, scarring, neuronal damage, and vascular and tissue remodeling. The dynamics of SCI rapidly transform from acute, sub-acute, and chronic phases. The rapidly changing environment necessitates the real-time monitoring of disease severity. Therefore, in this study, we used the IVIS spectrum, a noninvasive fluorescence imaging modality, to monitor the disease pathology in live animals. We used near-infrared fluorescence imaging agents including Angiosense 750 EX, a probe that detects vascular changes, and Cat B 680 FAST, a probe that detects inflammation at various day points post injury (DPI), that is, DPI-1, DPI-14, and DPI-28. We quantified the pathophysiological changes after SCI using IVIS in live animals. As a result, we observed distinct differences in the disease progression between injured and sham mice. Moreover, live imaging showed a good correlation with behavioral studies, protein expression, and immunohistological analysis. Hence, the goal of this study was to introduce a new optical imaging modality that offers a determination of disease severity and the advantage of accelerated imaging of the correlated biomarkers in a real-time and dynamic manner. This study concluded that Cat B 680 Fast and Angiosense 750 EX could be used to assess the disease severity after SCI. Furthermore, our study suggests that the noninvasive fluorescence optical imaging modality offers a unique approach in monitoring neuroinflammatory diseases in live animals.
Keyphrases