Identifying Synergistic Components of Botanical Fungicide Formulations Using Interpretable Graph Neural Networks.
Oliver SnowAmirreza KazemiForum BhanshaliAlyas NasiriAnnett RozekMartin EsterPublished in: Journal of chemical information and modeling (2024)
Botanical formulations are promising candidates for developing new biopesticides that can protect crops from pests and diseases while reducing harm to the environment. These biopesticides can be combined with permeation enhancer compounds to boost their efficacy against pests and fungal diseases. However, finding synergistic combinations of these compounds is challenging due to the large and complex chemical space. In this paper, we propose a novel deep learning method that can predict the synergy of botanical products and permeation enhancers based on in vitro assay data. Our method uses a weighted combination of component feature vectors to represent the input mixtures, which enables the model to handle a variable number of components and to interpret the contribution of each component to the synergy. We also employ an ensemble of interpretation methods to provide insights into the underlying mechanisms of synergy. We validate our method by testing the predicted synergistic combinations in wet-lab experiments and show that our method can discover novel and effective biopesticides that would otherwise be difficult to find. Our method is generalizable and applicable to other domains, where predicting mixtures of chemical compounds is important.