Login / Signup

Perylene Bisimide-Cored Supramolecular Coordination Complexes: Interplay between Ensembles, Excited State Processes, and Aggregation Behaviors.

Xingmao ChangZhaolong WangGang WangTaihong LiuSimin LinYu Fang
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle (2) and a trigonal prism (3) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3 )2 Pt(OTf)2 -based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI (1), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2, however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.
Keyphrases