The antibacterial and antihemolytic activities assessment of zinc oxide nanoparticles synthesized using plant extracts and gamma irradiation against the uro-pathogenic multidrug resistant Proteus vulgaris.
Marwa Salah El-Deen SalemAmira Yahia MahfouzRasha Mohammad FathyPublished in: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine (2020)
In the case of Proteus vulgaris infection, the increased occurrence of multidrug-resistance strains has become a critical challenge in the treatment of urinary tract diseases. Therefore, using plant extracts as eco-friendly antibacterial provides an attractive solution to battle bacterial infection. The current study investigates the antibacterial and antihemolytic activity of nine medicinal plant extracts against P. vulgaris. Citrus limon extract at 150 µg/ml exhibited the highest antimicrobial action against P. vulgaris (the inhibition zone diameter; 22.7 mm). Zinc oxide nanoparticles (ZnO NPs) are synthesized using the plant extracts of C. limon, Allium sativum, Sonchus bulbosus, Allium cepa, and Asparagus racemosus. The antibacterial activity of ZnO NPs synthesized using C. limon extract at 150 µg/ml is significantly increased (33.8 mm). ZnO NPs synthesized using A. cepa, A. racemosus, and C. limon plant extracts are effectively protective for human red blood cells. The ZnO NPs synthesized using C. limon extract are characterized using UV-Visible spectroscopy, FTIR, XRD, and TEM. FTIR revealed that the plant extracts may serve as reducing and capping agents of ZnO NPs. XRD spectra confirmed the crystallinity of ZnO NPs. TEM image demonstrated the formation of spherical shapes of ZnO NPs with an average size of 37.05 nm. SEM of P. vulgaris cells treated with ZnO NPs showed cellular morphological damage compared to the untreated cells. ZnO NPs are synthesized by gamma irradiation as a clean and novel method. This study recommended the promising uses of the biosynthesized ZnO NPs using plant extracts as a natural, unique approach, to control the pathogenicity of P. vulgaris.
Keyphrases
- oxide nanoparticles
- room temperature
- quantum dots
- reduced graphene oxide
- visible light
- oxidative stress
- light emitting
- multidrug resistant
- induced apoptosis
- silver nanoparticles
- cell wall
- staphylococcus aureus
- endothelial cells
- red blood cell
- deep learning
- cell death
- molecular dynamics
- cystic fibrosis
- radiation therapy
- biofilm formation
- essential oil
- induced pluripotent stem cells