Login / Signup

Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM).

Liliana BarbieriHuw Colin-YorkKseniya KorobchevskayaDi LiDeanna Lynn WolfsonNarain KaredlaFalk SchneiderBalpreet Singh AhluwaliaTore SeternesRoy Ambli DalmoMichael L DustinDong LiMarco Fritzsche
Published in: Nature communications (2021)
Quantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.
Keyphrases
  • single molecule
  • healthcare
  • public health
  • induced apoptosis
  • cell cycle arrest
  • oxidative stress
  • cell death
  • mass spectrometry
  • quantum dots
  • drug induced