Fuch's Endothelial Corneal Dystrophy in Cataract Patients Is Associated with Elevated Levels of Inflammatory Chemokines, but Not Growth Factors, in the Aqueous Humor.
Rafał FiolkaEdward WylegalaMichał ToborekDominika SzkodnyZenon Paweł CzubaAdam WylęgałaPublished in: International journal of molecular sciences (2024)
The study investigated a profile of chemokines and growth factors in the aqueous humor (AH) of eyes with Fuch's endothelial corneal dystrophy (FECD) and cataracts in comparison with cataract patients as a control group. A total of 52 AH samples (26 FECD + cataract and 26 cataract/control) were collected before cataract surgery. None of the patients had any clinically apparent inflammation at the time of AH collection. The AH levels of MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β(CCL4), RANTES (CCL5), eotaxin (CCL11), IP-10 (CXCL10), FGF basic, G-CSF, GM-CSF, PDGF-bb, and VEGF were compared between the groups. The analyses were performed using the Bio-Plex 200 System from Bio-Rad. Among the studied parameters, the AH levels of RANTES, eotaxin, and IP-10 significantly increased in the FECD + cataract eyes, compared with the cataract controls ( p < 0.05). Elevated levels of the RANTES, Eotaxin, and IP-10 indicate more intense inflammation in the eyes of patients in the FECD + cataract group. Moreover, these factors exhibit potential as predictive biomarkers for early detection of FECD in cataract patients. The discovery of elevated concentrations of biochemical markers in a patient, who has not yet received a clinical diagnosis, may suggest the need for heightened observation of the other eye to monitor the potential development of FECD.
Keyphrases
- end stage renal disease
- cataract surgery
- newly diagnosed
- chronic kidney disease
- prognostic factors
- peritoneal dialysis
- oxidative stress
- magnetic resonance imaging
- optical coherence tomography
- small molecule
- endothelial cells
- computed tomography
- risk assessment
- high resolution
- angiotensin ii
- climate change
- single molecule
- liver injury
- cerebrospinal fluid
- dna repair