Raspberry-Shaped Thermochromic Energy Storage Nanocapsule with Tunable Sunlight Absorption Based on Color Change for Temperature Regulation.
Wan ZhangChaoxia WangKunlin ChenYunjie YinPublished in: Small (Weinheim an der Bergstrasse, Germany) (2019)
A novel raspberry-shaped thermochromic energy storage nanocapsule (RTESN) is successfully designed and fabricated with switchable sunlight absorption capacity based on color change for temperature regulation. The RTESN is developed by grafting amino-modified silica shell thermochromic nanoparticles (amino-TLD@SiO2 ) on the surface of epoxy-functionalized energy storage nanocapsules (paraffin@PSG), with a total particle size about 450 nm. RTESN exhibits a deep color under low temperatures, which can absorb sunlight for heating. During the continuous thermal energy supply, paraffin@PSG is capable of storing thermal energy owing to its large latent heat capacity of 118.7 J g-1 , thereby maintaining the slow temperature increase. When the temperature is higher than the phase change temperature of paraffin@PSG, the color of amino-TLD@SiO2 turns to white with more reflection of sunlight so that it reduces the absorption of thermal energy and prevents the further increase of temperature. The thermal regulation behavior is confirmed by setting up a wooden house with the surface covered with RTESN. Compared with the blank wooden house, the RTESN covered wooden house (RTESN-H) displays thermal insulation performances during heating and cooling with a maximum temperature difference of 7 °C.