T-spherical fuzzy power aggregation operators and their applications in multi-attribute decision making.
Harish GargKifayat UllahTahir MahmoodNasruddin HassanNaeem JanPublished in: Journal of ambient intelligence and humanized computing (2021)
The paper aims to present the concept of power aggregation operators for the T-spherical fuzzy sets (T-SFSs). T-SFS is a powerful concept, with four membership functions denoting membership, abstinence, non-membership and refusal degree, to deal with the uncertain information as compared to other existing fuzzy sets. On the other hand, the relationship between the different pairs of the attributes are well recorded in terms of power operators. Thus, keeping these advantages of T-SFSs and power operator, the objective of this work is to define several weighted averaging and geometric power aggregation operators. The stated operators named as T-spherical fuzzy weighted, ordered weighted, hybrid averaging and geometric operators for the collection of the T-SFSs. The various properties and the special cases of them are also derived. Further, the consequences of proposed new power aggregation operators are studied in view of some constraints. Finally, a multiple attribute decision making algorithm, based on the proposed operators, is established to solve the problems with uncertain information and illustrate with numerical examples. A comparative study, superiority analysis and discussion of the proposed approach are furnished to confirm the approach.