Login / Signup

Macrocycle-Based Solid-State Supramolecular Polymers.

Bin HuaLi ShaoMing LiHaozhong LiangFeihe Huang
Published in: Accounts of chemical research (2022)
Supramolecular polymers, generated by connecting monomers through noncovalent interactions, have received considerable attention over the past years, as they provide versatile platforms for developing diverse aesthetically pleasing polymeric structures with promising applications in a variety of fields, such as medicine, catalysis, and sensing. In the development of supramolecular polymers, macrocyclic hosts play a very important role. Benefiting from their abundant host-guest chemistry and self-assembly characteristics, macrocycles themselves or their host-guest complexes can self-assemble to form well-ordered supramolecular polymeric architectures including pseudopolyrotaxanes and polyrotaxanes. The integration of these topological structures into supramolecular polymeric materials also imbues them with some unforeseen functions. Current interest in macrocycle-based supramolecular polymers is mostly focused on the development of supramolecular soft materials in solution or gel-state, in which the dynamic nature of noncovalent interactions endows supramolecular polymers with a wealth of "smart" properties, such as multiresponsiveness and self-repair capabilities. While preparation of macrocycle-derived supramolecular polymers in the solid state is a relatively challenging but intriguing prospect, they are an important part of the field of supramolecular polymers. On one hand, the construction of macrocycle-based solid-state supramolecular polymers enables us to obtain new materials with novel properties and functions such as mechano-responsiveness. On the other hand, the molecular structures and arrangements in these materials are well-identified by X-ray crystallography techniques, offering a direct visual representation of the supramolecular polymerization process. The analysis of the role of noncovalent interactions in these architectures allows us to design more sophisticated and elegant supramolecular polymers in a highly rationalized and controllable manner. This Account serves to summarize the research progress on macrocycle-based solid-state supramolecular polymers (MSSPs), including the contributions toward this field made by our group. For constructing MSSPs, the key point is to control noncovalent interactions. Thus, in this Account, we primarily classify these MSSPs by different noncovalent interactions involved to connect the monomers, including metal-ligand interactions, host-guest interactions, π···π stacking, and halogen bonding. These noncovalent interactions are highly associated with the structures and functions of the resultant MSSPs. For instance, using metal-ligand interactions as driving forces, metal clusters can be introduced in MSSPs which afford systems with solid-state luminescence or proton conduction properties; supramolecular polymerization using macrocycle-based host-guest interactions can modulate the molecular arrangement of some specific molecules in the solid state, which further influences their solid-state properties; π···π stacking interactions and halogen bonding give chemists more choice to design MSSPs with various elements. The role of macrocyclic hosts in MSSPs is also revealed in these descriptions. Finally, the remaining challenges are identified for further development of future prospects. We hope that this Account can inspire new discoveries in the realm of supramolecular functional systems and offer new opportunities for the construction of supramolecular architectures and solid-state materials.
Keyphrases
  • solid state
  • water soluble
  • energy transfer
  • drug delivery
  • high resolution
  • magnetic resonance imaging
  • computed tomography
  • mass spectrometry
  • cancer therapy
  • molecularly imprinted
  • neural network
  • single molecule