Huisgen [3 + 2] Dipolar Cycloadditions of Phthalazinium Ylides to Activated Symmetric and Non-Symmetric Alkynes.
Vasilichia AntociCostel MoldoveanuRamona DanacVioleta MangalagiuGheorghita ZbanciocPublished in: Molecules (Basel, Switzerland) (2020)
We present herein a straightforward and efficient pathway for the synthesis of pyrrolophthalazine cycloadducts via Huisgen [3 + 2] dipolar cycloaddition reactions of phthalazinium ylides to methyl propiolate or dimethyl acetylenedicarboxylate (DMAD). A thoroughly comparative study concerning the efficiency of synthesis, conventional thermal heating (TH) versus microwave (MW) and ultrasound (US) irradiation, has been performed. The cycloaddition reactions of phthalazinium ylides to methyl propiolate occur regiospecific, with a single regioisomer being obtained. Under conventional TH, the cycloaddition reaction of phthalazinium ylides with DMAD occurs to a mixture of inseparable partial and fully aromatized pyrrolophthalazine cycloadducts, while MW or US irradiation are leading only to fully aromatized compounds, with the reactions becoming selective. A feasible mechanism for formation of fully aromatized compounds is presented. Besides selectivity, it has to be noticed that the reaction setup under MW or US irradiation offer a number of other certain advantages: higher yields, decreasing of the amount of used solvent comparative with TH, decreasing of the reaction time from hours to minutes and decreasing of the consumed energy; consequently, these reactions could be considered environmentally friendly.