Self-Assembly of a Water-Soluble Pd 16 Square Bicupola Architecture and Its Use in Aerobic Oxidation in Aqueous Medium.
Pranay Kumar MaitraSoumalya BhattacharyyaNeal HickeyPartha Sarathi MukherjeePublished in: Journal of the American Chemical Society (2024)
Designing supramolecular architectures with uncommon geometries has always been a key goal in the field of metal-ligand coordination-driven self-assembly. It acquires added significance if functional building units are employed in constructing such architectures for fruitful applications. In this report, we address both these aspects by developing a water-soluble Pd 16 L 8 coordination cage 1 with an unusual square orthobicupola geometry, which was used for selective aerobic oxidation of aryl sulfides. Self-assembly of a benzothiadiazole-based tetra-pyridyl donor L with a ditopic cis -[(tmeda)Pd(NO 3 ) 2 ] acceptor [tmeda = N , N , N ', N '-tetramethylethane-1,2-diamine] produced 1 , and the geometry was determined by single-crystal X-ray diffraction study. Unlike the typically observed tri- or tetrafacial barrel, the present Pd 16 L 8 coordination assembly features a distinctive structural topology and is a unique example of a water-soluble molecular architecture with a square orthobicupola geometry. Efficient and selective aerobic oxidation of sulfides to sulfoxides is an important challenge as conventional oxidation generally leads to the formation of sulfoxide along with toxic sulfone. Cage 1 , designed with a ligand containing a benzothiadiazole moiety, demonstrates an ability to photogenerate reactive oxygen species (ROS) in water, thus enabling it to serve as a potential photocatalyst. The cage showed excellent catalytic efficiency for highly selective conversion of alkyl and aryl sulfides to their corresponding sulfoxides, therefore without the formation of toxic sulfones and other byproducts, under visible light in aqueous medium.