Login / Signup

Tracking the Delocalized Proton in Concerted Proton Transfer in Bulk Water.

Shengheng YanBinju WangHai Lin
Published in: Journal of chemical theory and computation (2023)
A solvated proton in water is often characterized as a charge or structural defect, and it is important to track its evolution on-the-fly in certain dynamics simulations. Previously, we introduced the proton indicator, a pseudo-atom, whose position approximates the location of the excess proton modeled as a structural defect. The proton indicator generally yields a smooth trajectory of a hydrated proton diffusing in aqueous solutions, including in the events of stepwise proton transfer via the Grotthuss mechanism; however, the proton indicator did not perform well in the events of concerted proton transfer, for which it occasionally yielded large position displacements between two successive time steps. To overcome this hurdle, we develop a new algorithm of a proton indicator with greatly enhanced performance for concerted proton transfer in bulk water. A protocol is proposed to exhaustively explore the hydrogen-bonding network of the water wires over which the excess proton is delocalized and to properly account for the contributions of the water molecules in this network as the geometry evolves. The new proton indicator (called Indicator 2.0) is assessed in dynamics simulations of an excess proton in bulk water and in specially constructed model systems of more complex architectures. The results demonstrate that the new indicator yields a smooth trajectory in both stepwise and concerted proton transfers.
Keyphrases
  • electron transfer
  • machine learning
  • molecular dynamics
  • network analysis