Cytotoxicity and Genotoxicity of Epoxy Resin-Based Root Canal Sealers before and after Setting Procedures.
Mijoo KimMarc HayashiBo YuThomas K LeeReuben H KimDeuk-Won JoPublished in: Life (Basel, Switzerland) (2022)
Epoxy resin-based sealers are commonly used for successful endodontic treatment. This study aimed to evaluate the cytotoxicity and genotoxicity of epoxy resin-based sealers under unset and set conditions. Three epoxy resin-based sealers were used: Adseal, AH Plus, and Dia-Proseal. To test cytotoxicity, an agar overlay test and a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay were performed using unset and set sealers on L929 mouse fibroblasts. The genotoxicity test of the comet assay was performed using the same cell line. Extract dilutions in the culture media were used as test materials for the MTT and comet assays. The comet tail produced by the damaged DNA was calculated by image analyses. Statistical analyses were performed using one-way analysis of variance and Tukey's post hoc test. Unset sealers did not show defined decolorized areas. Hardened specimens of resin-based sealers showed circular discolored zones in the agar overlay test. Dia-Proseal was the least cytotoxic after hardening. These results were confirmed in the MTT assay. Cell viability was significantly higher in cells treated with hardened sealers in both groups than that in cells treated with freshly mixed sealers in the MTT assay. Unset AH Plus ® and Dia-Proseal™ significantly increased cell viability with decreasing dilution. Adseal™ was the least cytotoxic. Freshly mixed Adseal™ was more genotoxic when freshly mixed than when set. Unset epoxy resin-based sealers were generally more cytotoxic and genotoxic than set materials. Cytotoxicity does not always match the genotoxicity results; therefore, various test tools are required to test toxicity. It is necessary to properly evaluate the toxic effects to establish a biocompatibility test that mimics clinical conditions.
Keyphrases
- high throughput
- induced apoptosis
- oxidative stress
- deep learning
- cell proliferation
- high resolution
- signaling pathway
- mass spectrometry
- ms ms
- liquid chromatography tandem mass spectrometry
- endoplasmic reticulum stress
- single molecule
- single cell
- smoking cessation
- replacement therapy
- circulating tumor
- circulating tumor cells
- tandem mass spectrometry