Au-Protected Ag Core/Satellite Nanoassemblies for Excellent Extra-/Intracellular Surface-Enhanced Raman Scattering Activity.
Zhiqiang ZhangKazuki BandoAtsushi TaguchiKentaro MochizukiKazuhisa SatoHidehiro YasudaKatsumasa FujitaSatoshi KawataPublished in: ACS applied materials & interfaces (2017)
Silver nanoparticles (AgNPs) and their assembled nanostructures such as core/satellite nanoassemblies are quite attractive in plasmonic-based applications. However, one biggest drawback of the AgNPs is the poor chemical stability which also greatly limits their applications. We report fine Au coating on synthesized quasi-spherical silver nanoparticles (AgNSs) with few atomic layers to several nanometers by stoichiometric method. The fine Au coating layer was confirmed by energy-dispersive X-ray spectroscopy elemental mapping and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The optimized minimal thickness of Au coating layer on different sized AgNSs (22 nm Ag@0.9 nm Au, 44 nm Ag@1.8 nm Au, 75 nm Ag@2.9 nm Au, and 103 nm Ag@0.9 nm Au) was determined by extreme chemical stability tests using H2O2, NaSH, and H2S gas. The thin Au coating layer on AgNSs did not affect their plasmonic-based applications. The core/satellite assemblies based on Ag@Au NPs showed the comparable SERS intensity and uniformity three times higher than that of noncoated Ag core/satellites. The Ag@Au core/satellites also showed high stability in intracellular SERS imaging for at least two days, while the SERS of the noncoated Ag core/satellites decayed significantly. These spherical Ag@Au NPs can be widely used and have great advantages in plasmon-based applications, intracellular SERS probes, and other biological and analytical studies.