Login / Signup

Downregulation of NHP2 promotes proper cyst formation in Drosophila ovary.

Shumpei MoritaRyoma OtaSatoru Kobayashi
Published in: Development, growth & differentiation (2018)
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries. Thus, it is reasonable to conclude that Sxl represses NHP2 activity at the post-transcriptional level to promote proper cyst formation. Because NHP2 knockdown did not affect global protein synthesis in the germarium, we speculate that changes in NHP2-dependent pseudouridylation, which is involved in translation of specific mRNAs, must be intact in order to promote proper cyst formation.
Keyphrases
  • single cell
  • stem cells
  • cell therapy
  • induced apoptosis
  • cell proliferation
  • small molecule
  • healthcare
  • signaling pathway
  • transcription factor
  • dna repair
  • long non coding rna
  • dna damage
  • cell cycle