Login / Signup

Platelet Activation in Ovarian Cancer Ascites: Assessment of GPIIb/IIIa and PF4 in Small Extracellular Vesicles by Nano-Flow Cytometry Analysis.

Barbara BortotAlessandro MangognaBen PeacockRebecca LeesFrancesco ValleMarco BrucaleSara TassinariFederica RomanoGiuseppe RicciStefania Biffi
Published in: Cancers (2022)
In ovarian cancer, ascites represent the microenvironment in which the platelets extravasate to play their role in the disease progression. We aimed to develop an assay to measure ascites' platelet activation. We enriched small extracellular vesicles (EVs) (40-200 nm) from ascites of high-grade epithelial ovarian cancer patients ( n = 12) using precipitation with polyethylene glycol, and we conducted single-particle phenotyping analysis by nano-flow cytometry after labelling and ultra-centrifugation. Atomic force microscopy single-particle nanomechanical analysis showed heterogeneous distributions in the size of the precipitated particles and their mechanical stiffness. Samples were fluorescently labelled with antibodies specific to the platelet markers GPIIb/IIIa and PF4, showing 2.6 to 18.16% of all particles stained positive for the biomarkers and, simultaneously, the EV membrane labelling. Single-particle phenotyping analysis allowed us to quantify the total number of non-EV particles, the number of small-EVs and the number of platelet-derived small-EVs, providing a platelet activation assessment independent of the ascites volume. The percentage of platelet-derived small-EVs was positively correlated with platelet distribution width to platelet count in sera (PDW/PLT). Overall, we presented a high-throughput method that can be helpful in future studies to determine the correlation between the extent of platelet activation in ascites and disease status.
Keyphrases
  • high throughput
  • flow cytometry
  • cell free
  • atomic force microscopy
  • high grade
  • stem cells
  • photodynamic therapy
  • high resolution