6-Shogaol as a Novel Thioredoxin Reductase Inhibitor Induces Oxidative-Stress-Mediated Apoptosis in HeLa Cells.
Shoujiao PengShaopeng YuJunmin ZhangJiange ZhangPublished in: International journal of molecular sciences (2023)
Inhibition of thioredoxin reductase (TrxR) is a crucial strategy for the discovery of antineoplastic drugs. 6-Shogaol (6-S), a primary bioactive compound in ginger, has high anticancer activity. However, its potential mechanism of action has not been thoroughly investigated. In this study, we demonstrated for the first time that 6-S, a novel TrxR inhibitor, promoted oxidative-stress-mediated apoptosis in HeLa cells. The other two constituents of ginger, 6-gingerol (6-G) and 6-dehydrogingerduone (6-DG), have a similar structure to 6-S but fail to kill HeLa cells at low concentrations. 6-Shogaol specifically inhibits purified TrxR1 activity by targeting selenocysteine residues. It also induced apoptosis and was more cytotoxic to HeLa cells than normal cells. The molecular mechanism of 6-S-mediated apoptosis involves TrxR inhibition, followed by an outburst of reactive oxygen species (ROS) production. Furthermore, TrxR knockdown enhanced the cytotoxic sensitivity of 6-S cells, highlighting the physiological significance of targeting TrxR by 6-S. Our findings show that targeting TrxR by 6-S reveals a new mechanism underlying the biological activity of 6-S and provides meaningful insights into its action in cancer therapeutics.