Porous Scaffolds Based on Polydopamine/Chondroitin Sulfate/Polyvinyl Alcohol Composite Hydrogels.
Zuwu TangMeiqiong YuAjoy Kanti MondalXinxing LinPublished in: Polymers (2023)
In this paper, porous scaffolds based on composite hydrogels were fabricated using polydopamine (PDA), chondroitin sulfate (CS), and polyvinyl alcohol (PVA) via the freezing/thawing method. Different characteristics of the prepared composite hydrogels, including the pore sizes, compression strength, lap shear strength, mass loss, and cytocompatibility were investigated. Scanning electron microscope images (SEM) displayed the hydrogel pore sizes, ranging from 20 to 100 μm. The composite hydrogel exhibited excellent porosity of 95.1%, compression strength of 5.2 MPa, lap shear strength of 21 kPa on porcine skin, and mass loss of 16.0%. In addition, the composite hydrogel possessed good relative cell activity of 97%. The PDA/CS/PVA hydrogel is cytocompatible as a starting point, and it can be further investigated in tissue engineering.