Login / Signup

HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics.

Amy R StromRonald J BiggsEdward J BaniganXiao-Tao WangKatherine ChiuCameron HermanJimena ColladoFeng YueJoan C Ritland PolitzLeah J TaitDavid ScalzoAgnes TellingMark GroudineClifford P BrangwynneJohn F MarkoAndrew D Stephens
Published in: eLife (2021)
Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.
Keyphrases
  • genome wide
  • transcription factor
  • dna damage
  • cell cycle
  • gene expression
  • dna methylation
  • copy number
  • cell proliferation
  • endothelial cells
  • social media
  • amino acid