Login / Signup

Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach.

Junwei MaSheng JiangZhiyang LiuZhiyuan RenDongze LeiChunhai TanHaixiang Guo
Published in: Sensors (Basel, Switzerland) (2022)
Slope failures lead to large casualties and catastrophic societal and economic consequences, thus potentially threatening access to sustainable development. Slope stability assessment, offering potential long-term benefits for sustainable development, remains a challenge for the practitioner and researcher. In this study, for the first time, an automated machine learning (AutoML) approach was proposed for model development and slope stability assessments of circular mode failure. An updated database with 627 cases consisting of the unit weight, cohesion, and friction angle of the slope materials; slope angle and height; pore pressure ratio; and corresponding stability status has been established. The stacked ensemble of the best 1000 models was automatically selected as the top model from 8208 trained models using the H2O-AutoML platform, which requires little expert knowledge or manual tuning. The top-performing model outperformed the traditional manually tuned and metaheuristic-optimized models, with an area under the receiver operating characteristic curve (AUC) of 0.970 and accuracy (ACC) of 0.904 based on the testing dataset and achieving a maximum lift of 2.1. The results clearly indicate that AutoML can provide an effective automated solution for machine learning (ML) model development and slope stability classification of circular mode failure based on extensive combinations of algorithm selection and hyperparameter tuning (CASHs), thereby reducing human efforts in model development. The proposed AutoML approach has the potential for short-term severity mitigation of geohazard and achieving long-term sustainable development goals.
Keyphrases