Login / Signup

Involvement of neurons in the non-human primate anterior striatum in proactive inhibition.

Atsushi YoshidaOkihide Hikosaka
Published in: bioRxiv : the preprint server for biology (2024)
Behaving as desired requires selecting the appropriate behavior and inhibiting the selection of inappropriate behavior. This inhibitory function involves multiple processes, such as reactive and proactive inhibition, instead of a single process. In this study, macaque monkeys were required to perform a task in which they had to sequentially select (accept) or refuse (reject) a choice. Neural activity was recorded from the anterior striatum, which is considered to be involved in behavioral inhibition, focusing on the distinction between proactive and reactive inhibitions. We identified neurons with significant activity changes during the rejection of bad objects. Cluster analysis revealed three distinct groups, of which one showed obviously increased activity during object rejection, suggesting its involvement in proactive inhibition. This activity pattern was consistent irrespective of the rejection method, indicating a role beyond mere saccadic suppression. Furthermore, minimal activity changes during the fixation task indicated that these neurons were not primarily involved in reactive inhibition. In conclusion, these findings suggest that the anterior striatum plays a crucial role in cognitive control and orchestrates goal-directed behavior through proactive inhibition, which may be critical in understanding the mechanisms of behavioral inhibition dysfunction that occur in patients with basal ganglia disease.
Keyphrases
  • spinal cord
  • endothelial cells
  • signaling pathway
  • oxidative stress