Login / Signup

Powerful Steroid-Based Chiral Selector for High-Throughput Enantiomeric Separation of α-Amino Acids Utilizing Ion Mobility-Mass Spectrometry.

Yuling LiBowen ZhouKeke WangJing ZhangWenjian SunLi ZhangYin-Long Guo
Published in: Analytical chemistry (2021)
Stereospecific recognition of amino acids (AAs) plays a crucial role in chiral biomarker-based diagnosis and prognosis. Separation of AA enantiomers is a long and tedious task due to the requirement of AA derivatization prior to the chromatographic or electrophoretic steps which are also time-consuming. Here, a mass-tagged chiral selector named [d0]/[d5]-estradiol-3-benzoate-17β-chloroformate ([d0]/[d5]-17β-EBC) with high reactivity and good enantiomeric resolution in regard to AAs was developed. After a quick and easy chemical derivatization step of AAs using 17β-EBC as the single chiral selector before ion mobility-mass spectrometry analysis, good enantiomer separation was achieved for 19 chiral proteinogenic AAs in a single analytical run (∼2 s). A linear calibration curve of enantiomeric excess was also established using [d0]/[d5]-17β-EBC. It was demonstrated to be capable of determining enantiomeric ratios down to 0.5% in the nanomolar range. 17β-EBC was successfully applied to investigate the absolute configuration of AAs among peptide drugs and detect trace levels of d-AAs in complex biological samples. These results indicated that [d0]/[d5]-17β-EBC may contribute to entail a valuable step forward in peptide drug quality control and discovering chiral disease biomarkers.
Keyphrases