Bti-based insecticide enhances the predatory abilities of the backswimmer Buenoa tarsalis (Hemiptera: Notonectidae).
Yeisson GutiérrezGabryele S RamosHudson V V ToméEugênio Eduardo de OliveiraAna L SalaroPublished in: Ecotoxicology (London, England) (2017)
The backswimmer Buenoa tarsalis (Hemiptera: Notonectidae) is a naturally occurring predator of immature stages of mosquitoes. These aquatic predators can suffer from non-targeted exposure to insecticides that are commonly used in aquatic environments to control mosquitoes. Here, we evaluated whether insecticide formulations containing the bacterium Bacillus thuringiensis var. israelensis (Bti) or the organophosphate pirimiphos-methyl would affect the survival and the predatory abilities of B. tarsalis. First, we conducted survival bioassays to estimate the median survival time (LT50) of B. tarsalis when exposed to Bti-based insecticide (at 0.25 and 25 mg a.i./L) and pirimiphos-methyl (at 1, 10 and 1000 mg a.i./L). The highest concentrations of the insecticides were equivalent to the label-recommended field rates. Second, the predatory abilities of B. tarsalis exposed to insecticides were evaluated at three prey densities (3, 6 and 9 mosquito larvae/100 mL water) just after insecticide exposure or after a 24 h recovery time. While the survival of B. tarsalis was significantly reduced with pirimiphos-methyl concentrations ≥10 mg a.i./L, the Bti-exposed predators exhibited similar survival as unexposed predators. Interestingly, after a recovery time of 24 h, B. tarsalis sublethally exposed to pirimiphos-methyl or Bti-based insecticide consistently killed more A. aegypti larvae (at the intermediate density) than unexposed predators. However, for the without-recovery bioassays, the pirimiphos-methyl-exposed predators exhibited reduced predatory abilities at the lowest prey density. Because they do not reduce the survival or the predatory abilities of B. tarsalis, Bti-based insecticides can be considered a safe insecticide to use in the presence of backswimmers.