Login / Signup

Self-Adhesive and Self-Sustainable Bioelectronic Patch for Physiological Feedback Electronic Modulation of Soft Organs.

Lili QianFei JinTong LiZhidong WeiXiying MaWeiying ZhengNegar JavanmardiZheng WangJuan MaChengteng LaiWei DongTing WangZhang-Qi Feng
Published in: Advanced materials (Deerfield Beach, Fla.) (2024)
Bionic electrical stimulation (Bio-ES) aims to achieve personalized therapy and proprioceptive adaptation by mimicking natural neural signatures of the body, while current Bio-ES devices are reliant on complex sensing and computational simulation systems, thus often limited by the low-fidelity of simulated electrical signals, and failure of interface information interaction due to the mechanical mismatch between soft tissues and rigid electrodes. Here, the study presents a flexible and ultrathin self-sustainable bioelectronic patch (Bio-patch), which can self-adhere to the lesion area of organs and generate bionic electrical signals synchronized vagal nerve envelope in situ to implement Bio-ES. It allows adaptive adjustment of intensity, frequency, and waveform of the Bio-ES to fully meet personalized needs of tissue regeneration based on real-time feedback from the vagal neural controlled organs. With this foundation, the Bio-patch can effectively intervene with excessive fibrosis and microvascular stasis during the natural healing process by regulating the polarization time of macrophages, promoting the reconstruction of the tissue-engineered structure, and accelerating the repair of damaged liver and kidney. This work develops a practical approach to realize biomimetic electronic modulation of the growth and development of soft organs only using a multifunctional Bio-patch, which establishes a new paradigm for precise bioelectronic medicine.
Keyphrases
  • stem cells
  • gene expression
  • spinal cord injury
  • drug delivery
  • dna methylation
  • body mass index
  • weight loss
  • gold nanoparticles
  • wound healing