Login / Signup

Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation.

Cécilia NeigeNicolas MavromatisMartin GagnéLaurent J BouyerCatherine Mercier
Published in: The Journal of physiology (2018)
When a movement repeatedly generates pain, we anticipate movement-related pain and establish self-protective strategies during motor preparation, but the underlying mechanisms remains poorly understood. The current study investigated the effect of movement-related pain anticipation on the modulation of behaviour and corticospinal excitability during the preparation of arm movements. Participants completed an instructed-delay reaction-time (RT) task consisting of elbow flexions and extensions instructed by visual cues. Nociceptive laser stimulations (unconditioned stimuli) were applied to the lateral epicondyle during movement execution in a specific direction (CS+) but not in the other (CS-), depending on experimental group. During motor preparation, transcranial magnetic stimulation was used to measure corticospinal excitability in the biceps brachii (BB). RT and peak end-point velocity were also measured. Neurophysiological results revealed an opposite modulation of corticospinal excitability in BB depending on whether it plays an agonist (i.e. flexion) or antagonist (i.e. extension) role for the CS+ movements (P < 0.001). Moreover, behavioural results showed that for the CS+ movements RT did not change relative to baseline, whereas the CS- movements were initiated more quickly (P = 0.023) and the CS+ flexion movements were faster relative to the CS- flexion movements (P < 0.001). This is consistent with the pain adaptation theory which proposes that in order to protect the body from further pain, agonist muscle activity is reduced and antagonist muscle activity is increased. If these strategies are initially relevant and lead to short-term pain alleviation, they may potentially have detrimental long-term consequences and lead to the development of chronic pain.
Keyphrases