Quantifying the Interdependence of Metal-Ligand Covalency and Bond Distance Using Ligand K-edge XAS.
Kyounghoon LeeAnastasia V BlakeCourtney M DonahueKyle D SpielvogelBrian J BellottScott R DalyPublished in: Angewandte Chemie (International ed. in English) (2019)
Bond distance is a common structural metric used to assess changes in metal-ligand bonds, but it is not clear how sensitive changes in bond distances are with respect to changes in metal-ligand covalency. Here we report ligand K-edge XAS studies on Ni and Pd complexes containing different phosphorus(III) ligands. Despite the large number of electronic and structural permutations, P K-edge pre-edge peak intensities reveal a remarkable correlation that spectroscopically quantifies the linear interdependence of covalent M-P σ bonding and bond distance. Cl K-edge studies conducted on many of the same Ni and Pd compounds revealed a poor correlation between M-Cl bond distance and covalency, but a strong correlation was established by analyzing Cl K-edge data for Ti complexes with a wider range of Ti-Cl bond distances. Together these results establish a quantitative framework to begin making more accurate assessments of metal-ligand covalency using bond distances from readily-available crystallographic data.