Login / Signup

Quantum chemistry for molecules at extreme pressure on graphical processing units: Implementation of extreme-pressure polarizable continuum model.

Ariel GaleEugen HruskaFang Liu
Published in: The Journal of chemical physics (2021)
Pressure plays essential roles in chemistry by altering structures and controlling chemical reactions. The extreme-pressure polarizable continuum model (XP-PCM) is an emerging method with an efficient quantum mechanical description of small- and medium-sized molecules at high pressure (on the order of GPa). However, its application to large molecular systems was previously hampered by a CPU computation bottleneck: the Pauli repulsion potential unique to XP-PCM requires the evaluation of a large number of electric field integrals, resulting in significant computational overhead compared to the gas-phase or standard-pressure polarizable continuum model calculations. Here, we exploit advances in graphical processing units (GPUs) to accelerate the XP-PCM-integral evaluations. This enables high-pressure quantum chemistry simulation of proteins that used to be computationally intractable. We benchmarked the performance using 18 small proteins in aqueous solutions. Using a single GPU, our method evaluates the XP-PCM free energy of a protein with over 500 atoms and 4000 basis functions within half an hour. The time taken by the XP-PCM-integral evaluation is typically 1% of the time taken for a gas-phase density functional theory (DFT) on the same system. The overall XP-PCM calculations require less computational effort than that for their gas-phase counterpart due to the improved convergence of self-consistent field iterations. Therefore, the description of the high-pressure effects with our GPU-accelerated XP-PCM is feasible for any molecule tractable for gas-phase DFT calculation. We have also validated the accuracy of our method on small molecules whose properties under high pressure are known from experiments or previous theoretical studies.
Keyphrases
  • density functional theory
  • molecular dynamics
  • molecular dynamics simulations
  • climate change
  • healthcare
  • blood pressure
  • primary care
  • drug discovery
  • high resolution
  • quality improvement