Shining Light on Osteoarthritis: Spatially Offset Raman Spectroscopy as a Window into Cartilage Health.
Piyush RajLintong WuCraig AlmeidaLauren ConwaySwati TanwarJill MiddendorfIshan BarmanPublished in: ACS sensors (2024)
Articular cartilage is a complex tissue, and early detection of osteoarthritis (OA) is crucial for effective treatment. However, current imaging modalities lack molecular specificity and primarily detect late-stage changes. In this study, we propose the use of spatially offset Raman spectroscopy (SORS) for noninvasive, depth-dependent, and molecular-specific diagnostics of articular cartilage. We demonstrate the potential of SORS to penetrate deep layers of cartilage, providing a comprehensive understanding of disease progression. Our SORS measurements were characterized and validated through mechanical and histological techniques, revealing strong correlations between spectroscopic measurements and both Young's modulus and depth of cartilage damage. By longitudinally monitoring enzymatically degraded condyles, we further developed a depth-dependent damage-tracking method. Our analysis revealed distinct components related to sample depth and glycosaminoglycan (GAG) changes, offering a comprehensive picture of cartilage health. Collectively, these findings highlight the potential of SORS as a valuable tool for enhancing OA management and improving patient outcomes.