Visible Helicity Induction and Memory in Polyallene toward Circularly Polarized Luminescence, Helicity Discrimination, and Enantiomer Separation.
Lei XuYong-Jie WuRun-Tan GaoShi-Yi LiNa LiuZong-Quan WuPublished in: Angewandte Chemie (International ed. in English) (2023)
Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.