Login / Signup

Surgical Tumor-Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy.

Xinyu YeXin LiangQian ChenQianwei MiaoXiuli ChenXudong ZhangLin Mei
Published in: ACS nano (2019)
Personalized cancer vaccines show great potential in cancer immunotherapy by inducing an effective and durable antitumor response. However, the limitation of neoantigen identification, low immunogenicity, and weak immune response hamper the development of personalized cancer vaccines. The surgically removed tumor contains tumor antigens specific to the patient, which provides a promising source for personalized cancer vaccines. Here, we utilized the surgically removed tumor to prepare a personalized photothermal vaccine combined with the PD-1 checkpoint blockade antibody to prevent tumor relapse and metastasis. Black phosphorus quantum dot nanovesicles (BPQD-CCNVs) coated with surgically removed tumor cell membrane were prepared and loaded into a thermosensitive hydrogel containing GM-CSF and LPS. The sustained release of GM-CSF from the hypodermic injection of Gel-BPQD-CCNVs effectively recruited dendritic cells to capture tumor antigen. NIR irradiation and LPS stimulated the expansion and activation of DCs, which then traveled to the lymph nodes to present antigen to CD8+ T cells. Moreover, the combination with PD-1 antibody significantly enhanced tumor-specific CD8+ T cell elimination of the surgical residual and lung metastatic tumor. Hence, our work may provide a promising strategy for the clinical development of a personalized cancer vaccine.
Keyphrases