Login / Signup

Production of iron-enriched yeast and it's application in the treatment of iron-deficiency anemia.

Ying ChenYuanxiang PangHongbing WanXinyi ZhouMingli WanShengshuo LiXuelian Liu
Published in: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine (2024)
Iron deficiency anemia (IDA) is one of the most serious forms of malnutrition. Wild type strains of Saccharomyces cerevisiae have higher tolerance to inorganic iron and higher iron conversion and accumulation capacity. The aim of this study was to investigate the effect of S. cerevisiae enriched iron as a potential organic iron supplement on mice with iron deficiency anemia. 60 male Kunming mice (KM mice, with strong adaptability and high reproduction rate, it can be widely used in pharmacology, toxicology, microbiology and other research) were randomly divided into normal control group and iron deficiency diet model group to establish IDA model. After the model was established, IDA mice were randomly divided into 5 groups: normal control group, IDA group, organic iron group (ferrous glycinate), inorganic iron group (ferrous sulfate) and S. cerevisiae enriched iron group. Mice in the experimental group were given different kinds of iron by intragastric administration once a day for 4w. The results showed that S. cerevisiae enriched iron had an effective recovery function, and the body weight and hematological parameters of IDA mice returned to normal levels. The activities of superoxide dismutase, glutathione peroxidase and total antioxidant capacity in serum were increased. In addition, the strain no. F8, able to grow in an iron-rich environment, was more effective in alleviating IDA and improving organ indices with fewer side effects compared to ferrous glycinate and ferrous sulfate groups. This study suggests that the iron-rich strain no. F8 may play an important role in improving IDA mice and may be developed as a new iron supplement.
Keyphrases
  • iron deficiency
  • wild type
  • high fat diet induced
  • saccharomyces cerevisiae
  • body weight
  • type diabetes
  • physical activity
  • nitric oxide
  • skeletal muscle
  • adipose tissue