Login / Signup

Can Two-Dimensional Correlation Spectroscopy (2D-COS) Indicate Biocompatible Material?

Aleksandra Wesełucha-BirczyńskaElżbieta DługońKrzysztof MorajkaMarta Błażewicz
Published in: Applied spectroscopy (2024)
Carbon nanofibers are a new type of carbon materials. One of the methods of obtaining them is the carbonization of a polymer precursor. They are attractive in many areas, including medicine, due to the possibility of modifying their properties in a wide range. For example, the conditions of the carbonization process result in the creation of materials with designed structures and surface parameters. In the current work, the nanoprecursor was polyacrylonitrile (PAN) fibers. Two types of carbon fibers obtained by carbonization of the PAN precursor at 1000 °C were tested. The first electrospun carbon nanofibers (ESCNFs) were cytotoxic, while the second ESCNF-f were biocompatible after functionalization. The parameters obtained from Raman tests did not clearly discriminate between the tested materials. Multiwavelength Raman studies, analyzed using the two-dimensional correlation spectroscopy (2D-COS), treating the laser energy as an external disturbance, showed a difference between both fibrous structures. 2D-COS indicates that structures resembling graphite systems, devoid of disordered carbon forms, are nontoxic.
Keyphrases
  • high resolution
  • sewage sludge
  • ionic liquid
  • drug release
  • risk assessment
  • heavy metals