Login / Signup

Self-Assembled Ring-Based Complex Colloidal Particles by Lock-And-Key Interaction and Their Self-Assembly into Unusual Colloidal Crystals.

Linna WangBing Liu
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Creating hierarchical crystalline materials using simple colloids or nanoparticles is very challenging, as it is usually impossible to achieve hierarchical structures without nonhierarchical colloidal interactions. Here, we present a hierarchical self-assembly (SA) route that employs colloidal rings and anisotropic colloidal particles to form complex colloids and uses them as building blocks to form unusual colloidal columnar liquid crystals or crystals. This route is realized by designing hierarchical SA driving forces that is controlled by the colloidal shape and shape-dependent depletion attraction. Depletion-induced lock-and-key interaction is the first driving force, which ensures a high efficiency (>90%) to load colloidal particles of other shapes such as spheres, spherocylinders, and oblate ellipsoids into rings, providing high-quality building blocks. Their SA into ordered superstructures has to require a second driving force such as higher volume fraction and/or stronger depletion attraction. As a result, unusual hierarchical colloidal (liquid) crystals, which have previously been difficult to fabricate by simple binary assembly, can be achieved. This work presents a significant advancement in the field of hierarchical SA, demonstrating a promising strategy for constructing many unprecedented crystalline materials by the SA route.
Keyphrases
  • room temperature
  • high efficiency
  • ionic liquid
  • single molecule
  • high glucose
  • stress induced