Login / Signup

Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals.

Jun YinPartha MaityRounak NaphadeBin ChengJr-Hau HeOsman M BakrJean-Luc BredasOmar F Mohammed
Published in: ACS nano (2019)
Hot carrier (HC) cooling is a critical photophysical process that significantly influences the optoelectronic performance of hybrid perovskite-based devices. The hot carrier extraction at the device interface is very challenging because of its ultrashort lifetime. Here, ultrafast transient reflectance spectroscopy measurements and time-domain ab initio calculations show how the dielectric constant of the organic spacers can control and slow the HC cooling dynamics in single-crystal 2D Ruddlesden-Popper hybrid perovskites. We find that (EA)2PbI4 (EA = HOC2H4NH3+) that correspond to a high dielectric constant organic spacer has a longer HC cooling time compared to that of (AP)2PbI4 (AP = HOC3H6NH3+) and (PEA)2PbI4 (PEA = C6H5C2H4NH3+). The slow HC relaxation process in the former case can be ascribed to a stronger screening of the Coulomb interactions, a small nonradiative internal conversion within the conduction bands, as well as a weak electron-phonon coupling. Our findings provide a strategy to prolong the hot carrier cooling time in low-dimensional hybrid perovskite materials by using organic spacers with reduced dielectric confinement.
Keyphrases
  • room temperature
  • perovskite solar cells
  • solar cells
  • ionic liquid
  • transcription factor
  • high efficiency
  • single molecule
  • molecular dynamics simulations
  • molecular dynamics
  • density functional theory
  • solid state