A yeast-based screening system identified bakkenolide B contained in Petasites japonicus as an inhibitor of interleukin-2 production in a human T cell line.
Shota UesugiMayuka HakozakiYuko KannoHonoka TakahashiYui KudoKen-Ichi KimuraHidetoshi YamadaAkira YanoPublished in: Bioscience, biotechnology, and biochemistry (2021)
Ca2+ signaling is related to various diseases such as allergies, diabetes, and cancer. We explored Ca2+ signaling inhibitors in natural resources using a yeast-based screening method and found bakkenolide B from the flower buds of edible wild plant, Petasites japonicus, using the YNS17 strain (zds1Δ erg3Δ pdr1/3Δ). Bakkenolide B exhibited growth-restoring activity against the YNS17 strain and induced Li+ sensitivity of wild-type yeast cells, suggesting that it inhibits the calcineurin pathway. Additionally, bakkenolide B inhibited interleukin-2 production at gene and protein levels in Jurkat cells, a human T cell line, but not the in vitro phosphatase activity of human recombinant calcineurin, an upstream regulator of interleukin-2 production. Furthermore, bakkenolide A showed weak activity in YNS17 and Jurkat cells compared with bakkenolide B. These findings revealed new biological effects and the structure-activity relationships of bakkenolides contained in P. japonicus as inhibitors of interleukin-2 production in human T cells.