Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
David GutsteinDavid LynallSelvakumar V NairI SavelyevM BluminDaniele ErcolaniH E RudaPublished in: Nano letters (2017)
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO2.