Login / Signup

Control of Nanomorphology in Fullerene-Free Organic Solar Cells by Lewis Acid Doping with Enhanced Photovoltaic Efficiency.

Dongyang ZhangQian LiJianqi ZhangJianqiu WangXuning ZhangRong WangJiyu ZhouZhi-Xiang WeiChunfeng ZhangHuiqiong ZhouYuan Zhang
Published in: ACS applied materials & interfaces (2019)
Generating desired efficiency enhancements in organic solar cells (OSCs) by charge-transfer doping requires to obtain modified optoelectronic properties while retaining the favorable nanomorphology. We report a thermally assisted doping based on Lewis acid tris(pentafluorophenyl)-borane (BCF) as a p-dopant for two groups of OSCs comprising the PBDB-TF and PBDB-T donors and a nonfullerene acceptor IT-4F. We found that the face-on molecular packing in the PBDB-TF:IT-4F blend or neat PBDB-TF donor films is favorably modified with the formation of frustrated Lewis pairs (FLPs) in the donor, which is in contrast to the hampered π-π stacking in the doped PBDB-T film. The different impacts of BCF dopants on the morphology lead to contrasting photovoltaic behaviors where the PBDB-TF-based devices receive enhanced power conversion efficiencies (PCEs) in the presence of BCF, while reduction of efficiencies is observed in the PBDB-T device. In the best doping conditions with the proposed hot-film deposition, we achieve a boosted PCE of 14.1% in PBDB-TF:IT-4F solar cells at low BCF concentrations. Based on the same fluorinated donor, the described BCF doping also applies to NF-solar cells based on the NF-acceptor Y6, leading to an increase in the PCE to 16.0%. Our results suggest that controlling the degree of FLP formation in the donor component with the addition of BCF is key to obtaining desired improvements on nanomorphology and relevant photophysical properties in OSCs.
Keyphrases