Unveiling the Correlation Between the Membrane Assembly of P-gp and Drug Resistance in Multiple Myeloma Using Super-Resolution Fluorescence Imaging.
Junling ChenYuwei DuHao HouWenFeng LiChunyan SunFeng LiangHongda WangPublished in: Analytical chemistry (2024)
Drug resistance in multiple myeloma (MM) poses a significant challenge to treatment efficacy, primarily attributed to P-glycoprotein (P-gp) dysfunction. This study delves into the elusive spatial organization of P-gp, aiming to enhance our understanding of its role in MM drug resistance by exploring the intricate relationship between molecular function and spatial arrangement. Employing super-resolution imaging of P-gp with the inhibitor probe Tariquidar-TAMR labeling on MM cell membranes, the research uncovered a more pronounced clustering distribution of P-gp in drug-resistant cells (MM1R) compared to drug-sensitive counterparts (MM1S). Further exploration revealed the clustering distribution of P-gp was heightened as cellular drug resistance increased in hypoxic condition, directly emphasizing the strong correlation between P-gp cluster morphology and drug resistance. Additionally, stable P-gp cluster formation was influenced by cross-linking of membrane carbohydrates, and disrupting these glycoprotein clusters could reduce cellular drug resistance, suggesting that altering distribution patterns of P-gp can modulate drug responsiveness. Finally, dexamethasone (Dex) treatment was revealed to enhance P-gp clustering distribution, particularly in MM1S cells, indicating that change degree in P-gp distribution correlate with the modifiable space of cellular drug responsiveness. This study provides insights into the correlation between P-gp assembly and cellular drug responsiveness, deepening our understanding of functional changes in MM drug resistance and offering valuable perspectives for overcoming this challenge.